

SIMONA: Agent-based Discrete-Event Simulation Environment for Electric Power Distribution System Analysis

NXX

Energy Informatics - Vienna, 04.10.2023

K)

Introduction and workshop agenda

•••••• Introduction and Overview Introduction

Thomas Oberließen

- Industrial Engineer and
- PHD Candidate at ie3 institute since 2021
- Agent based simulation and ML-Application

Daniel Feismann

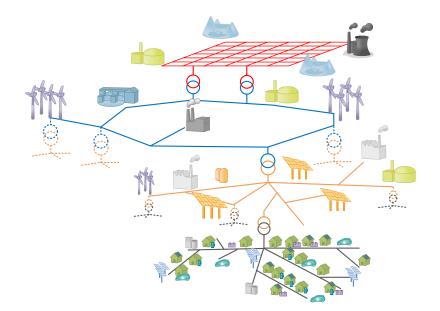
- Electrical Engineer and Industrial Engineer
- At ie3 institute as PhD Candidate since 2022 before at grid operator and utilities
- Research on grid planning approaches and congestion management

4-6 people + student assistants are working on SIMONA as of today

••••• Introduction and Overview Agenda

- Motivation and objective
- Core components and functional overview
- Concepts of Agents and their behaviour
- Coffee Break
- Excursion PowerSystemDataModel
- Flexibility and DMS
- SIMONA in research projects
- Wrap-up

KI^

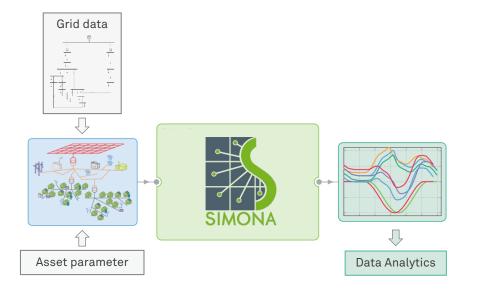

•••••• SIMONA - Motivation and objective Energy transition is massively changing electrical energy system

Change in supply task

- Conventional power plants
- Renewable energies
- Sector-coupling
- Electric vehicles

Effects on distribution grids

- Increasing system complexity
- Increasing volatility
- Network planning and operation are becoming more complex
- Increasing dependence between network planning and operation
- > Flexible models for system simulation for planning, operation and analysis purposes are needed


••••• SIMONA - Motivation and objective SIMONA is a digital representation of the energy system for simulation purposes

1. Feed-in and load simulation of plants

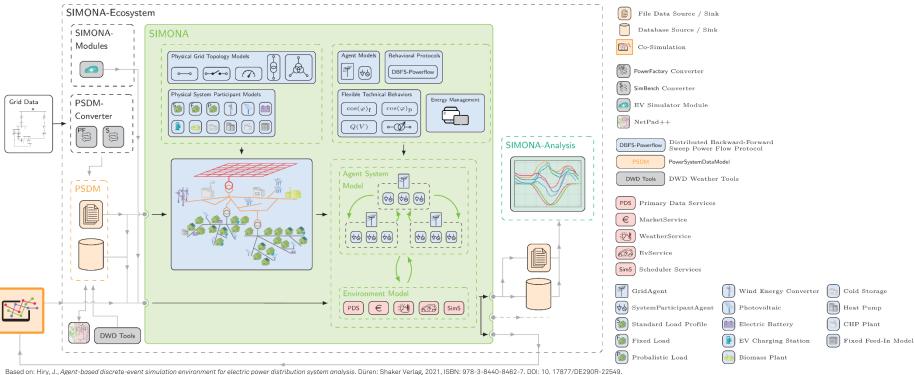
- Physical operating behaviour
- "User-centred" behaviour models
- Flexible, controlled operation

2. Power flow calculation

- Across voltage levels
- Innovative, decentralized approach for large grids
- Consideration of control systems
- 3. Time series generation
 - Quasi-dynamic with a resolution of up to 1 s
 - Feed-in and load time series
 - Grid utilization time series

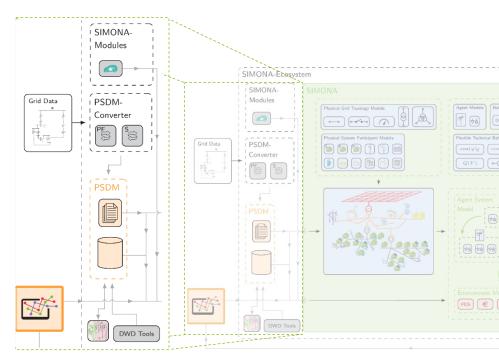


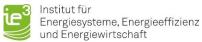
Ŕſ


Core components and functional overview

SIMONA ie³ TU Dortmund | Vienna, 04.10.2023

•••••• SIMONA – Core components and functional overview SIMONA - The modular digital mapping of the energy system




Energiesysteme, Energieeffizienz und Energiewirtschaft

SIMONA – Core components and functional overview $\bullet \bullet \bullet \bullet \bullet \bullet$ SIMONA is able to interface several input sources

- Grid converter to PowerSystemDataModel
- Mobility Simulation
- Weather Service interface (DWD)
- Time series interface for external time series data e.g. from smart meter

•••••• SIMONA – Core components and functional overview SIMONA includes all Grid Topology Models and several System Participants

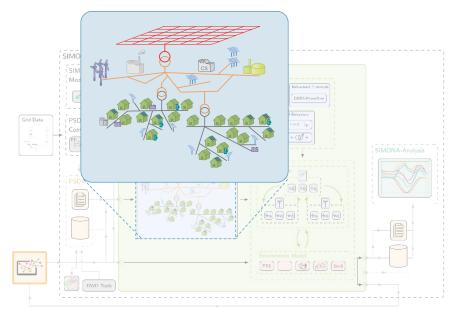
System Participant Models


- Loads
 - Household load
 - Heat Pump, Storage and Thermal House Model
 - Electric Vehicle and Charging Station
- Renewable power generation (PV, Wind)
- Conventional power generation

Grid Topology Models

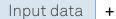
• Nodes, Lines, Transformers, ...

	SIMONA-Ecosystem	
Grid Data	SIMONA Modules Protect Cold Topology Models Physical Grid Topology Models Component Control	SIMONA-Analysis
	Physical System Participant Models	


••••• SIMONA – Core components and functional overview Grid and System Participant Assets form the electrical system

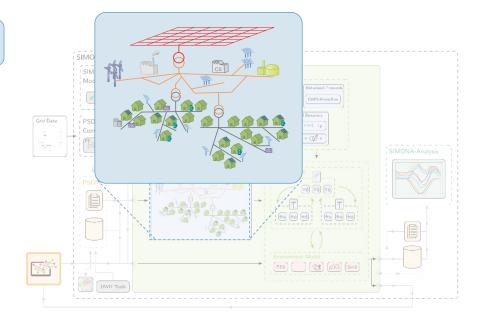

- Full technical description of the overall system
- Trade-Off between model specificity and ease of use

What's missing?



••••• SIMONA – Core components and functional overview Grid and System Participant Assets form the electrical system

Grid Model



Grid analysis

- Enables time series-based system investigation
- Highly flexible and easy modelling
 - Topologies
 - Different scenarios
- Including detailed asset parameterization

Target:

Model grid and system participants according to requirements of analysis

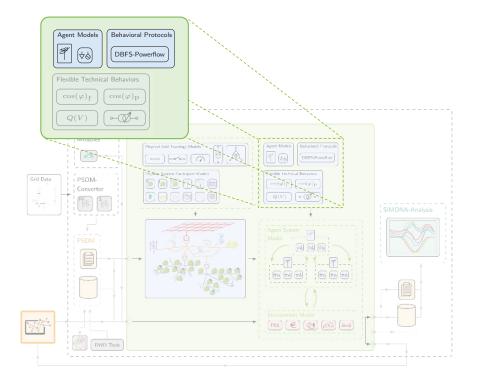
K

Agents and their Behaviour

SIMONA ie³ TU Dortmund | Vienna, 04.10.2023

••••• Agents and their Behaviour What makes an Agent

Definition of an Agent

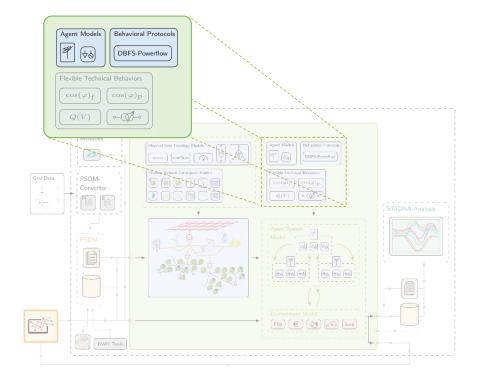

- .. depends on who you ask
- Communication, Autonomy, Negotiation

Decomposition Approach

- Every Agent is its own decoupled system
- "Fear Less" concurrency
- Hides internal implementation details

Enables Internal Communication

• Agents can communicate with each other, and act based on their internal state and environment


••••• Agents and their Behaviour What makes an Agent

Agent Models

- Grid Agents
 - Represents the grid and communicates with agents connected to it's grid model
- System Participant Agents
 - System Participants of the system
 - E.g., PVs, Loads, EVs, ...

Behavioral Protocols

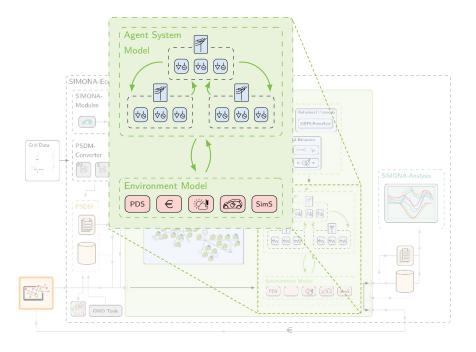
- Agent interaction is defined by behavioral protocols
- E.g., Power Flow communication

•••••• SIMONA – Core components and functional overview The Simulation Environment Model

Like in real life, agents act in an Environment

• Encompasses information that can influence the agent's behaviour

The environment is described by services


• Each service delivers the environment dependent data to each agent that needs it

Subscription based service

• Each agent that needs data from a service can subscribe to it

Implemented Services

- Weather Data
- Market Prices
- Primary Data

••••• Excursion: Data Concepts & Flows Data Services

Secondary Data

Used for model calculations

-<u>Ò</u>-

• E.g., Weather Data

Primary Data

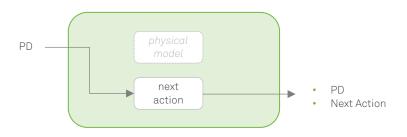
- Actual model behavior of a system
- E.g., active and reactive Power

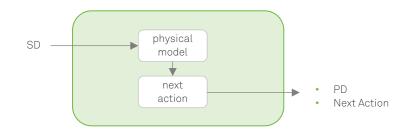
Secondary Data Service

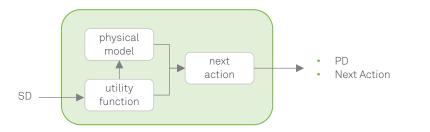
- Environment Agent that delivers Secondary Data
- E.g., Weather Service

Primary Data Service

 Delivers precalculated primary data to system


4


SIMONA agents replay the behavior



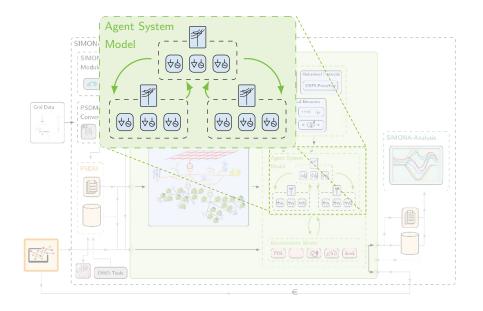
••••• Agents and their Behaviour Agent Types in SIMONA

Available Agent Types

- Simple Proxy Agent Type 1 (top left)
- Physical Model Agent Type 2 (bottom left)
- Physical Model Agent with UF Type 3 (top right)

Agents and their Behaviour **Discrete-Event Scheduling and Time Advancement**

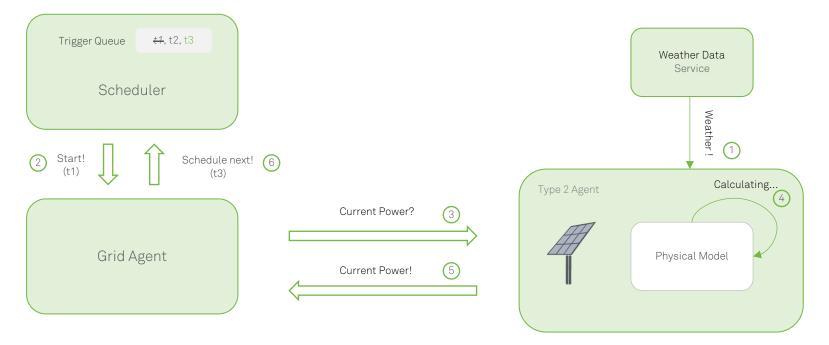
Discrete-Event Approach


- The represented system only changes when an event takes place
- Conversely the system is in equilibrium between state changes

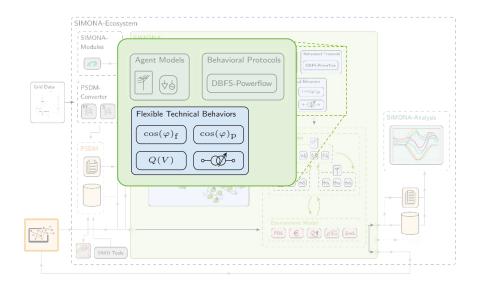
Scheduler

- State Changes are orchestrated by central system scheduler
 - Triggers the agent that registered a state change for current simulation tick

Agent Behaviour


Registers state changes by sending an activation request for a defined tick to scheduler

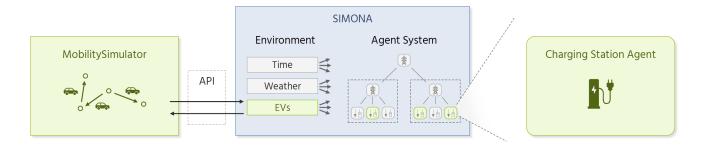
••••• Agents and their Behaviour High Level Exemplary Agent Calculation


••••• SIMONA – Core components and functional overview Several behavioural protocols including Energy Management can be simulated

Grid Behaviour

- Multi-voltage level distributed backwardforward sweep power flow algorithm
- On load tap changing
- Overhead line monitoring

Participant Behaviour


- Active Power Dependent Power Factor
- Reactive Power as Function of Nodal Voltage Magnitude
- Energy Management on household and grid level

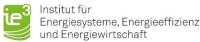
••••• Agents and their Behaviour Integration of Co-Simulations

Generation of Driving Behavior

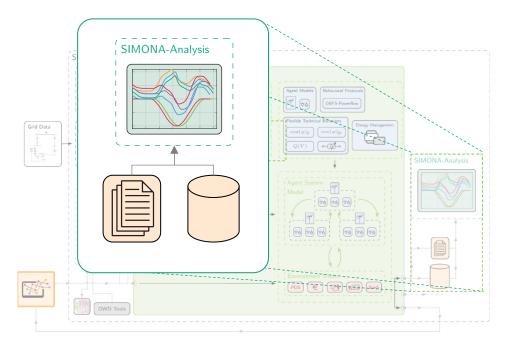
- Generation of car trips with Markov-Chains
- Determines trip destination and trip distance depending on transition probabilities
- Parameterization of trip generation with largest german mobility study: "Mobilität in Deutschland"

Charging

- Charging Station Agent in SIMONA
- Allows implementation of flexible charging behavior..
 - .. Demand Side Management
 - .. Vehicle-to-home



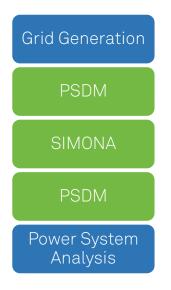
••••• SIMONA – Core components and functional overview

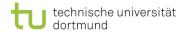


••••• SIMONA – Core components and functional overview Main outcome of SIMONA are time-series of all grid elements and participants

- Time step resolution as low as 1s
- PowerSystemDataModel
 - Results can be offered in various formats
 - CSV,
 - SQL,
 - Kafka
- Analysis can be performed multiple ways
 - ie³ psdm-analysis
 - Business Intelligence tools
 - Spreadsheet, Pandas

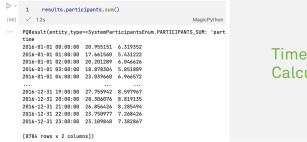
Ŕſ


System Analysis and Data Model

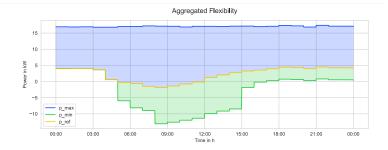


••••• Data Model The Value of a Distinct Data Model

- Defines a common interface
- Having a distinct Library
 - Can be incorporated in different projects
 - Interoperability due to same data format
- Building utilities surrounding the data Model
 - Grid model generation
 - Power System analysis
 - Plotting



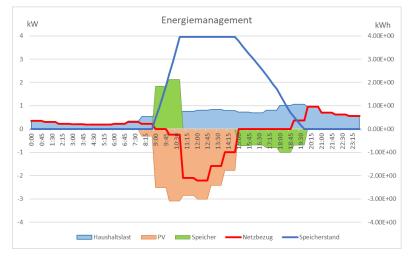
••••• Data Model PSDM-Analysis



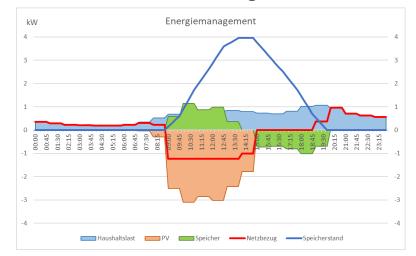
Flexibilities and Energy management systems (EMS)

SIMONA ie³ TU Dortmund | Vienna, 04.10.2023

••••• Flexibilities and EMS Increasing demand and potentials of flexibility requires flexibility simulation


Motivation for including flexibility functions in an energy and power systems simulation

- Grid extension is lagging and expensive (at least marginal costs for peak power)
- Increasing amounts of system participants with flexibility potential
- Higher grid utilisation are beneficial
- Flexibility usage can have a high impact on grid utilisation
- Thus, simulation of flexibility will be a requirement in future.



••••• Flexibilities and EMS Flexibility usage has a significant influence on grid load

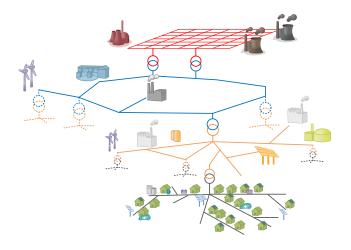
Minimize energy consumption from grid

Minimize residual load on grid

Max: -1,2 kW Feed in

Assumption: Battery storage 4kWh / 3kW

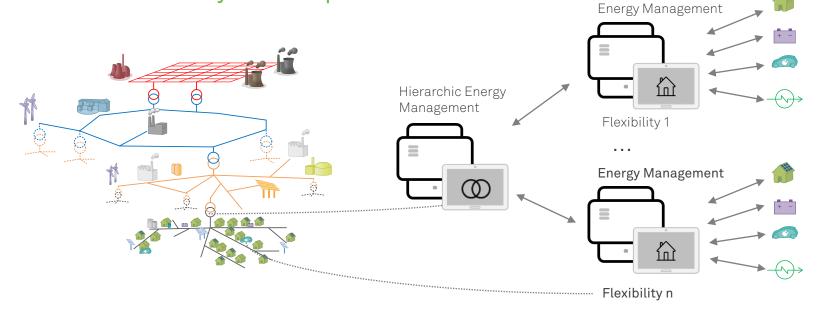
Max: -2,2 kW Feed in



••••• Flexibilities and EMS Goals and requirements for including Flexibilities into SIMONA

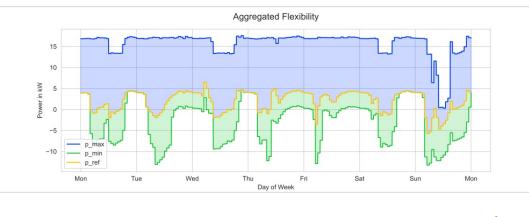
Goals

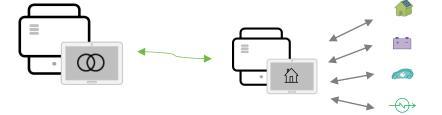
- Ability to simulate flexibility options and demand based on the agents information
- Aggregation, Disaggregation and Call of Flexibility
- Integration in Power Flow
- Flexible use at all grid levels (Household, Substations, etc.)
- Modelling of different strategies
 - Increase self consumption of renewables
 - Grid friendly behaviour by limiting Power at Node
 - Market behaviour by following price signals
- Coordination of flexibility



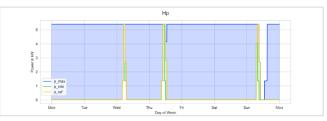
Energiesysteme, Energieeffizienz und Energiewirtschaft

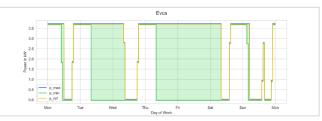
Flexibilities and EMS ••••• Generic Energy Management Agents enable simulation of Energy Management Systems and Flexibility on multiple levels





Institut für Energiesysteme, Energieeffizienz und Energiewirtschaft


••••• Flexibilities and EMS


Energy Management Agent manage flexibilities of underlying agents

Institut für Energiesysteme, Energieeffizienz und Energiewirtschaft

••••• Flexibilities and EMS Are there challenges? Yes, many! But one is working on these.

We don't have answers to all of them, but ...

Data? Does the user have all information on flexibility required?

Uncertainty? Parallel simulation of trajectories => computational power.

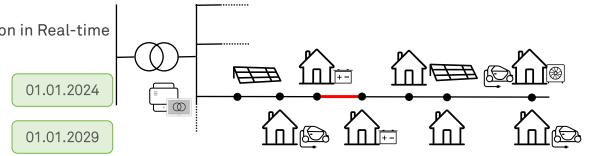
Dependency? Do decisions interact with each other? (Yes, to do!)

Optimization? Just simulate the behaviour or change the behaviour?

... challenges fit to actual research questions and projects

Smart Meter rollout

A challenge but agent-based simulation fits quite good to this



••••• Flexibilities and EMS EnWg 14a as Use Case for Energy Management

Goals

- State Estimation -> Identify congestion in Real-time
- Solve congestion by
 - A. Preventive Power Limit
 - B. Grid-oriented Control
 - Call flexibility to solve congestion
 - Max. 3 minutes from State Estimation

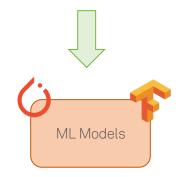
Status: 2. Konsultationsfassung 16.06.2023

×1

SIMONA in research projects

SIMONA ie³ TU Dortmund | Vienna, 04.10.2023

••••• Research projects Wide-ranging use in ongoing research projects with further developments



Situation

- We increasingly try to leverage data driven algorithms
 - DSSE, Time Series Forecasting, Optimal Powerflow, ...



Situation

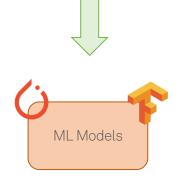
We increasingly rely on data driven algorithms

Problem

- Necessary data is hard to come by
- Especially grid and corresponding measurement data
 - Strict data protection regulations

Situation

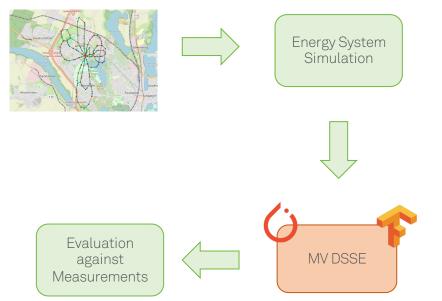
We increasingly rely on data driven algorithms


Problem

- Necessary data is hard to come by
- Especially grid and corresponding measurement data
 - Strict data protection regulations

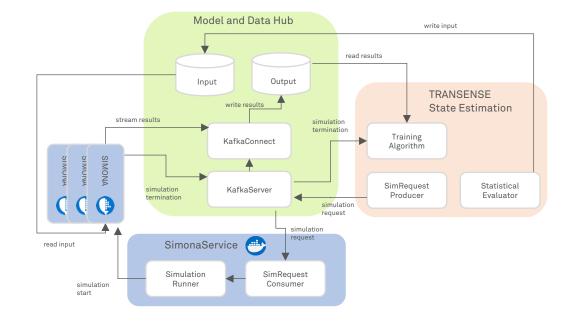
Solution (?)

- Simulation environments can act as an artificial data source
- Open Questions:
 - Necessary level of detail
 - Robustness against ..
 - .. Underlying changes in data distribution
 - .. Lack of measurement synchronicity



Energiesysteme, Energieeffizienz und Energiewirtschaft

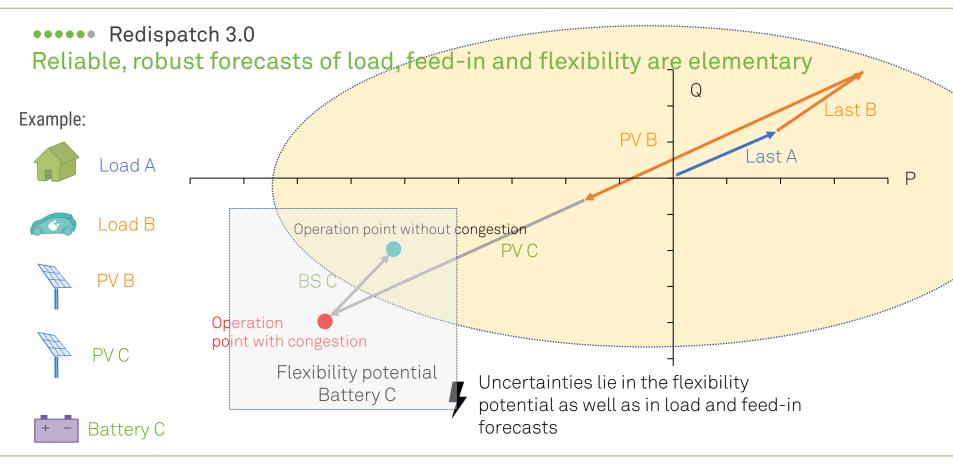
TRANSENSE A Digital Twin as a Machine Learning Data Source


- 1. Translate a model of a real MV distribution grid
- 2. Generate a training data set
- 3. Train Model
- 4. Evaluate model performance with real measurement data

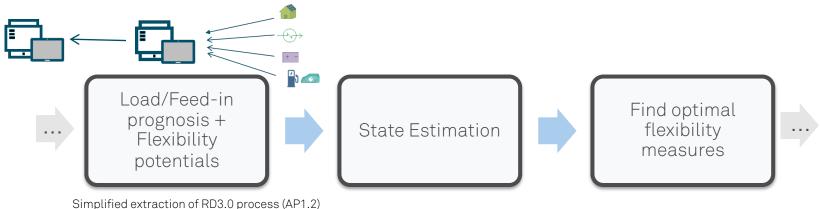
- Leverage energy system simulation for specific data sets
- Simulation-as-a-Service infrastructure
- Evaluate distribution of training data
 - Generate additional samples

••••• Research projects Redispatch 3.0 – Congestion management

	patch		2.0	3.0
₹ A	TSO	✓	✓	✓
	DSO		✓	✓
	Power plants > 10 MW	✓	✓	✓
	Power plants < 10 MW		✓	✓
⋛	Renewables > 100 kW		✓	✓
┣Щ	Renewables < 100 kW			✓
	Prosumer, batteries, heat pumps, electric vehicle, variable loads etc.			~


ie³ contribution

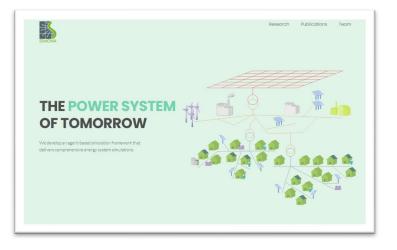
- SIMONA for prognosis and power flow calculations
- Flexibility aggregation for preventive Redispatch
- Optimize flexibility usage for Preventive Redispatch Use Case



••••• Redispatch 3.0 SIMONA uses EMS functionalities in RD3.0 for improving prognosis

Simplified extraction of RD3.0 process (AP1.2)

- Load / Feed-in prognosis in preventive RD
- Simulate possible flexibility offers / potentials


••••• Open Source SIMONA is free and available Open Source

• For more information visit our website

https://simona.ie3.e-technik.tu-dortmund.de

• SIMONA Code is available on GitHub

https://github.com/ie3-institute/simona

Institut für Energiesysteme, Energieeffizienz und Energiewirtschaft

Thank you for your attention!

Thomas Oberließen, M. Sc. Institut für Energiesysteme, Energieeffizienz und Energiewirtschaft ie³ Emil-Figge-Straße 70, 44227 Dortmund TU Dortmund, Gebäude G2, Raum 4.30

KNX

E-Mail: Telefon:

thomas.oberliessen@tu-dortmund.de 00 49 231 755 2587

Daniel Feismann, Dipl.-Ing. (FH), M. Sc. Institut für Energiesysteme, Energieeffizienz und Energiewirtschaft ie³ Emil-Figge-Straße 70 TU Dortmund Gebäude G2, Raum 4.31

E-Mail:daniel.feismann@tu-dortmund.deTelefon:00 49 231 755 6783